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Synchronization and clustering of synthetic genetic networks: A role for cis-regulatory modules
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The effect of signal integration through cis-regulatory modules (CRMs) on synchronization and clustering of
populations of two-component genetic oscillators coupled with quorum sensing is investigated in detail. We
find that the CRMs play an important role in achieving synchronization and clustering. For this, we investigate
six possible cis-regulatory input functions with AND, OR, ANDN, ORN, XOR, and EQU types of responses in two
possible kinds of cell-to-cell communications: activator-regulated communication (i.e., the autoinducer regu-
lates the activator) and repressor-regulated communication (i.e., the autoinducer regulates the repressor). Both
theoretical analysis and numerical simulation show that different CRMs drive fundamentally different cellular
patterns, such as complete synchronization, various cluster-balanced states and several cluster-nonbalanced

states.
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I. INTRODUCTION

Decoupling simple networks from their native yet often
complex biological settings can lead to valuable information
regarding evolutionary design principles. This motivates the
design and construction of synthetic genetic networks resem-
bling submodules of natural circuitry in vivo, which in turn
lead to the construction of devices and software capable of
performing elaborate functions in living cells [1]. Due to
recent advances in bioengineering technology, several proto-
type synthetic genetic motifs, such as logic gates [2,3],
toggle switches [4,5], and oscillators [6—8], have been suc-
cessfully constructed. These simple architectures are thought
of as essential modules in living organisms. Based on them,
complementary approaches have been developed to explore
the relationship between the structure and function of more
complex genetic circuits [9,10].

A natural step in the design of artificial gene networks
would be to include a mechanism of intercell coupling that
would globally enhance, given that cells are frequently sub-
ject to chemical signals from neighboring cells, the oscillat-
ing response of the system. The most common communica-
tion mechanism with such a function is quorum sensing, the
ability of bacteria to communicate with each other through
signaling molecules that are released into the cellular envi-
ronment. Quorum sensing has led to programed population
control in a bacterial population [11-29]. Through such a
mechanism, the ability of cells to communicate with one
another allows them to coordinate the behavior of the entire
community, where gene expression is regulated in response
to the local cell population density [30]. A well-defined ex-
ample of coordinated global behavior in bacteria is a popu-
lation of genetic relaxation oscillators coupled to a quorum-
sensing apparatus, which can achieve synchronization
through the so-called fast threshold modulation mechanism
[18]. Coupling, however, can be devised in different ways,
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e.g., attractive or repulsive cell-to-cell communication
[18,19,23,28], in synthetic systems. Different couplings
would lead to different dynamic patterns, such as synchroni-
zation, clustering, and multistability [23,28].

Why is there such a difference in cellular patterns when
different types of cellular communication are employed? Ac-
tually, biological functions appearing as collective behaviors
may arise from a particular module that integrates intracel-
lular and extracellular signals. Such a module is now known
as cis-regulatory module (CRM), which contains a cluster of
binding sites for transcription factors (TFs) and determines
the place and timing of gene action within the network. For
example, the CRM in the sea urchin embryo can control not
only static spatial assignment in development but also dy-
namic regulatory patterning [31]. TFs are often integrated in
a combinatorial logic manner. Moreover such a combination
may take different schemes [32-37], leading to different
CRMs. In fact, from views of evolutionism, CRMs are
changeable, e.g., cis-regulatory mutations [38], and such a
mutation constitutes an important part of the genetic basis for
adaptation. However, how different CRMs affect collective
behaviors across ensembles of genetic oscillators with cell-
to-cell communication remains to be fully explored.

In this paper, we investigate this question in detail and
find that CRMs play a significant role in the mode of dy-
namic patterns at the cellular population level. For example,
the CRMs can drive fundamentally different cellular patterns
such as synchronization and clustering. We first design and
construct a multicellular network with a CRM, using a vari-
ant of the synthetic genetic relaxation oscillator developed in
Escherichia coli [8] and utilizing quorum sensing to commu-
nicate between cells. Since different CRMs due to cis-
regulatory mutations [38] lead to different types of cis-
regulatory input functions (CRIFs) such as AND, OR, ANDN,
ORN, XOR, and EQU, we then investigate the effects of these
different CRIFs on cellular patterns to support our conclu-
sion. We emphasize that since the proposed genetic relax-
ation oscillator is composed of interacting positive and nega-
tive feedback loops, and this circuit topology is common in
genetic oscillators such as cell cycle and circadian clocks
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FIG. 1. (Color online) (a) Schematic diagram of the network of
genetic relaxation oscillators with a cis-regulator module, where the
right bidirectional arrow indicates that S can freely diffuse through
the cellular membrane. (b) Six cis-regulatory constructs for imple-
mentations of six different logic functions. In (a) and (b), X, Y, and
LuxI denote the proteins; P; and P, represent the promoters. Ox
stands for operator site, whereas RNAP stands for RNA poly-
merase. We use offset and overlapping boxes to indicate the mutual
repression and the dashed lines to indicate the cooperative
interaction.

[39-45], our conclusion on how CRMs influence the dynam-
ics of genetic circuits with this shared topology will be of
general relevance to a wide range of cellular processes.

II. MATHEMATICAL MODEL AND THEORETICAL
ANALYSIS

A. Model

First, we report our design on a network of coupled syn-
thetic genetic relaxation oscillators with a CRM, which is
schematically shown in Fig. 1. The core oscillator is a variant
of the genetic relaxation oscillator proposed in Ref. [8]. In
such an oscillator, the activator X (CII) and the repressor Y
are under the control of different promoters from the N\ phage
virus. In Fig. 1(a), X is the autocatalytic portion of the oscil-
lator, whereas Y is a protease that degrades X. Both genes x
and y are activated by protein X. Such a circuitry not only is
a useful architecture for understanding information process-
ing of simple oscillators but also appears as a common core
motif in biological contexts [39-44]. In our design, we uti-
lize the quorum-sensing apparatus of the bacterium Vibrio
fischeri [30] to communicate between cells. This cell-to-cell
communication system operates by diffusing a small mol-
ecule [also called autoinducer (AI)] into the environment.
Since the communication is implemented by the signal mol-
ecule which regulates the activator X, we refer to it as

PHYSICAL REVIEW E 79, 041903 (2009)

TABLE 1. Logic operations for cis-regulatory input

functions.
TFs Logic functions

S X AND OR ANDN ORN XOR  EQU
Low Low Off Off Off On Off On
Low High Off On Off Off On Off
High Low Off On On On On Off
High High On On Off On Off On
References  [3,33,37] [33,37,47] [34] [48] [33] [33,34]

activator-regulated communication. When this molecule
binds to a regulatory protein (LuxR), both it and X bind the
regulatory region of gene x or y and combinatorially modu-
late the transcription rate. Many of these combinational ef-
fects are performed by a CRM, which can function as an
analogous implementation of logic gates. The corresponding
CRM contains a cluster of binding sites of two different TFs
that control the activation or repression of a gene. These TFs
may be either activators enhancing the binding or the activity
of the RNA polymerase in the cognate promoters, or repres-
sors blocking this binding, or both via the mechanism of
“regulated recruitment” [46]. Based on the possible combi-
nation of the two TFs, the CRM can perform different logic
functions with different implementations, as shown in Fig.
1(b). Limited by the regulatory structure of the relaxation
oscillator (more precisely, the TF X serves as activator only),
we have six biologically feasible CRM designs: AND, OR,
ANDN, ORN, XOR, and EQU (see Table I). These logic func-
tions have been either described experimentally or suggested
to occur on the basis of simulations using empirical data
[49]. Actually, the prokaryotic transcription networks provide
a large number of composite logic operators that are imple-
mented through more complex natural or simulated regula-
tory setups. Alternatively, the CRM designs can be imple-
mented by introducing mutations at the amino-acid
sequences of the TFs and the base-pair (bp) sequences of the
cis-regulatory regions [34]. Note that in our designs, the sig-
naling molecules can serve as not only activators but also
repressors by the introduction of an alternative promoter
[50].

Then, we define the chemical species in Table II. All bio-
chemical reactions are listed in Fig. 2(a), and some reaction
constants are listed in Table III. Assume the fast reactions to
be in equilibrium; refer to the equilibrium equations shown
in Fig. 2(b), where square brackets stand for concentrations
of species. In fact, the fast reaction equilibrium trick based
on quasi-steady-state approximation approach has been
widely applied to reduce the complexity of multiscale prob-
lems [18,54]. The conservation laws for DNA-binding sites
in the regulatory regions are listed at the bottom of Fig. 2(c).

Define concentrations as our dynamical variables (see
Table IV). Using equalities for the fast reactions and the
conservation laws, we can eliminate fast variables. To that
end, we can derive expressions of five CRIFs which are
listed in Table V, and the rate equations which describe the
evolutions of the concentrations of X, Y, L, and S monomers
as follows:
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TABLE II. Descriptions of species in biochemical reactions.

Species Description

X Protein CII

Y Protein FtsH

L Protein LuxI

S Autoinducer AHL

C LuxR-S complex

X4 CII tetramer

C, Heterotetramer complex

P RNA polymerase

DX DNA-binding site in cII gene
DY DNA-binding site in ftsH gene
Dl DNA-binding site in luxI gene
DY CII-DNA complex

D¢ LuxR-S-DNA complex
Dy CII-LuxR-S-DNA complex
D¢ CII-LuxR-S-DNA complex

= CRIF - §,X,Y; - 8,X;,

Yy, 1w —8Y,

dr Y1y x}
dL. 1+ wX;
oo 5L,
dt 1 +X;1
ds;
—=ali= 88+ 7S, = S), (1)

where §,= 23" S, (when N cells are considered), in which Q
depends on the cell density in a nonlinear way. The rescaled
parameters are also listed in Table IV.

B. Analysis

1. Phase-reduction approach

First, we rewrite the final equation in Eq. (1) as the fol-
lowing symmetric form of coupling:

N

d
d—S_aL 85— n(1-Q)S;+— EnQ(s s). ()
t /1

For convenience, the system composed of both the first three
equations of Eq. (1) and the equation

ds;
_tl = axLi - BxSi - 77(1 - Q)Sl (3)

is called as auxiliary system, which is assumed to generate a
sustained oscillation. Then, we perform an analytical study
of the entire system in the phase-model description, which
holds in a weak-coupling case [55]. The main steps are as
follows. For convenience, we express the system of globally
coupled oscillators as
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(a) Reaction Scale
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(b) Fast Reaction Equilibrium

[XJ=K,[XT*
[D}=K.[X.][D"]
[DE]=K,[C.[D"]

[Cz]=K2[C]2
[DX]=K,[X.][D"]
[DXc]=K.[C.I[D]

[C]=K,[S][LuxR]
[Dy1=K,[X.][D]
[Dexl=K [X,][DE]

(C) Logic Function Reaction Conservation Law
AND I-VI (1)
OR I 1II-V (2)
ANDN -1V (1)
ORN LIL IV (2)
XOR L II-V (1)
EQU I-I11, VI (1)

[D"]=[D"]+[D}]+[Dg]+[Dicl+[D5y] 1)
[D"=[D"1+[D;] [D"1=[D"1+[D}]

[D*]=[D’]+[Di]+[Dc] [D]=[D"]+[D;] [D]=[D]+[D]  (2)

FIG. 2. (a) The biochemical reactions are classified as two
classes: fast and slow; (b) the equilibrium equations for the fast
reactions; (c) six logic operations and their biochemical reactions,
where the corresponding conservation laws are listed at the bottom.
The reaction rates used are experimentally reasonable; refer to [18].

N
d.x,' 1 .

where  x,=(X,,Y,,L;,S)";  f=(F,,F,,F;,F,)", with

4
F\=CRIF=8,X,Y;~8,X;, F,= yljf;ﬁ -5Y,, Fg—allrf;fl
-8L, and Fy=a,L—8S—n(1-0)S; and p(x,,x)

=(0,0,0,70(S;-S; ))T Assume that the uncoupled oscﬂlator
has period T. By the theorem of Kuramoto [55], for a weakly
perturbed system we can obtain the corresponding phase
model:

N
d¢; 1
— =) 21 (). x,(9)), (5)

where each x;(¢;) is the point on the limit cycle having phase
¢;, the symbol “-” is the dot product of two vectors, and
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TABLE III. Descriptions and values of raw parameters.

Description Values References

Dimerization equilibrium constant K,=1.8X108M!, K,=K5=2.5x 10°M"! [46,51]

Regulatory binding constant K,=Ks=K¢=K;=5Xx10%M"" [46]
Kg=Ky=2.5x10°M"!

Degradation rate of protein dy=dy=In2/10 min~!, d; =In 2/0.2 min~! [52]

Autoinducer synthesis rate

ds=In2/1.1 min™
c=1.1 min™! [53]

Bulk rate of transcription and translation kx=ky=k; =kc=30 min~! [6,46]
Amplified factor of transcription rate Ix=1v=/1.=10, fc=90, fxc=fcx=90 [46]
Rate of repressor degradation by Y Kyy=2X107M"! [18]
Plasmid copy number mx=10, my=1, my =50 [46]
Concentration of LuxR [LuxR]=1x10"8M"! [18]
Other parameters nyKy[DXT[P]=8 X 1078 M min™!, ny=ny=n =1 [8]

Z(¢;) = grad ¢(x;). (6)

Z(¢;), a phase response function characterizing the phase
advance per unit perturbation, is a 2m-period function with
respect to ¢;. To study collective properties of the network,
such as synchronization and clustering, it is convenient to
represent each ¢; as ¢;=r+;, with the first term capturing
the fast free-running natural oscillation d¢;/dt=1, and the
second term capturing the slow network-induced buildup of
phase derivation from the natural oscillation. Substituting the
expression of 1; into Eq. (5) results in

N
dd_? - ]%[Zi(t + ) - Z{ pl(t+3).x(r+ ). (7)

The classical method of averaging consists of a near-identity
change of variables that transforms the system into the form

N
dg; . 1 &
L=l NE Hij(b;— ¢, (8)

where H,;j(A¢) represents the interaction function with re-
spect to the phase difference A= ¢, ¢; between two cells,

1 (7
Hi(¢;— ¢) = ;JO Zi(1) - pxi(t),x;(t + ;= ;))dt

1 2
= Z_,f Z(6) 'P(¢j— @i+ 0)do, )
m™Jo

which can be calculated numerically [56]. In what follows,
we omit subscripts i and j for convenience. From H(A¢), we
introduce a function, G(A¢)=H(A¢)—H(-Ag), to deter-
mine the mode of coupling. If G(A¢) exhibits a positive
slope at A¢=0, i.e., G'(0) >0, the coupling is phase attrac-
tive. If G'(0) <0, the coupling is phase repulsive. Such an
approach based on the sign of G'(0) that depends generally
on the intrinsic dynamics of the uncoupled oscillator and on
the interaction between the oscillators is more effective than
that of directly observing the network topology in determin-
ing the mode of weak coupling [23], especially in the case of
complex network architectures.

According to Tables III and IV, we can estimate our sys-
tem parameter values as follows: a,=10, a,=1, a;=50, «;
=04, 6,=05, 6,=0.5, §=25, 6,=45, 6,,=5, m,=10, p,
=10, u;=10, u=9, u=90, A\=1, =10, and 0=0.5. For
such a set of values, numerical simulation verifies that the
term 11;,2_’;;117Q(S ;—S;) affects the timing but not the ampli-
tude of the auxiliary system for any N=2, so the above
analysis is feasible. In addition, we emphasize that for other
different experiments on multicellular systems with the quo-
rum sensing [11-17], the differences between the rescaled

TABLE IV. Rescaled variables and rescaled parameters for models. We assume K,=Kj3, K;=K5=Kj
=K;, Ky=Ky, Kx=Ky=K; =K, [DXT]=[DYT]=[D'"]=[DST], and ny=ny=n; =ng=e for rescaling.

Rescaled variables

Rescaled parameters

X= (K4K1)1/4[X]
Y=(K.K )" Y]
L=(K4K;)"[L]
S=K;(K>K7)"*[LuxR][S]

Me=T% y=1ys =1, ms=Tcs =S xcKg/ K7+ fcxKol Ky
a=my, a,=myny/ny, a=myny/ny, 7 =nxKx(K,K)"*[DXT][P]
a=cK3(KoK7) *[LuxR]/[(K | K) "), t=77, 8,=dx/ 7", 8,=dy/T*
S=dp/ T, 8y =Kxy/[(K\Ky)"*7*], 8,=ds/ 7", N=Kg/K;+Ko/K,
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TABLE V. Biochemical reactions and cis-regulatory input func-
tions for relaxation oscillators.

Logic function CRIF
14+, X+ S+, X252
AND X S axtS?
or . 1+ ,u,xXz + ,u,;S2
1+X7+S
1+ pm,X*
ANDN X+ S22
1+ X%
ORN axm
1+ X" +S5°+N\X"S
1+, X452
Hy B X+ S+ axts?

parameter values are not so large that they abolish our con-
clusions.

2. Determining the stability of balanced clustering

Balanced clusters mean that N oscillators are divided into
M subgroups of equal cell number with each subgroup being
synchronized and with the equal phase difference between
neighboring subgroups. Here, we employ the approach of
Okuda [57] to determine the stability of such clusters (see
the Appendix of this paper for details). In that method, we
need to calculate two kinds of eigenvalues: one is associated
with intracluster fluctuations and the other with intercluster
fluctuations, which are denoted by A\, and \,, respectively,
where M=p=N-1 and 0=¢g=M-1, with M being the
number of clusters presumptively. For convenience, denote
by NV and A the N-M same eigenvalues A, and the
maximum of the real parts of (M—1) nonzero eigenvalues
A,  respectively. By  calculation, we find N\,
=1/ME¥ T (27k/ M), with p=M,M+1,...,N-1, and
N =1/ M T Qak/ M)[ 1 —exp(=i2mkg/ M)],  with ¢
=0,1,...,M-1, where I'(A¢p)=H(-A¢). Then, the stability
of clusterings can be determined by the signs of A" and A?).
Specifically, the clustering is stable if both AV and \® are
negative, and is unstable if \?) is positive. In addition, if \(
is positive and A s negative, and further if M =N, the M
cluster (i.e., the splay state) is also stable.

In Secs. III and IV, we will numerically study cooperative
behaviors of coupled genetic relaxation oscillators with dif-
ferent CRMs. In contrast to the previous works [18-29], we
will show that different CRMs can drive fundamentally dif-
ferent dynamic patterns.

III. CASE OF TWO COUPLED CELLS: PHASE LOCKING

Synchronization and clustering of genetic oscillators
coupled to quorum sensing result from the interplay between
the intrinsic properties of the individual cells, the type of
cellular communication, and the network topology. To gain
insights into the rules governing dynamic patterns in com-
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plex networks of cells, here we investigate the case of two
coupled genetic oscillators in detail.

First, based on Eq. (8) the phase model of two coupled
oscillators can be characterized by

do, _
o =1+H(Ad),

d—qbz:1+H(—A¢), (10)

dt
where the phase difference is denoted as A¢=¢,—¢,. The
interplay between the two oscillators is often described by
the evolution of the phase difference A, which is deter-
mined solely by the odd part of the effective coupling func-
tion G(A¢), i.e., H{Ap)—H(-A¢). That is, the dynamics of
Ag is given by

dA¢

—C=-G(A9). (11)
The zero points of G(A¢) are the fixed points of Eq. (11).
These fixed points describe the phase-locked states of two
coupled cells and their stabilities are determined by the sign
of slope of the curve G(A¢) at the zero points. A positive
slope means that the corresponding fixed point is stable, im-
plying that A¢ near the fixed point dynamically converges to
the fixed point, whereas a negative slope means that the fixed
point is unstable, implying that A¢ close to the fixed point
dynamically diverges. The size of the slope determines the
convergence or divergence rate at the fixed point. The func-
tions G(A¢) corresponding to five logic operations AND, OR,
ANDN, ORN, and XOR are shown in Figs. 3(a)-3(e), respec-
tively (here and below we did not investigate the case of EQU
due to the fact that the EQU destroys the dynamics of the core
relaxation oscillator in the region of biological reasonable
parameters, leading to the loss of sustained oscillation),
whereas the interaction functions H(A¢) are shown in the
insets.

AND and OR. The function G(A¢) in Figs. 3(a) and 3(b)
equates to zero at A¢p=0 with positive slope and at Ap=1
with negative slope. Moreover, the zero point A¢=0 is the
unique stable state of Eq. (11). Therefore, the phase-model
analysis predicts that the phase difference of any initial val-
ues except A¢g= eventually converges to A¢=0. This re-
sult is also verified by integrating the original model with
various initial values. A typical snapshot is plotted in the
upper left of Fig. 3(f). Thus, the analysis together with nu-
merical simulation shows that AND and OR play a role in
stabilizing the in-phase synchronization for two coupled
cells. In this case, the coupling is phase attractive.

ANDN and ORN. Equation (11) has one unstable state A
=0 and one stable state A¢=1r, both of which correspond to
zero points of the function G, as shown in Figs. 3(c) and
3(d). The role of ANDN and ORN is to stabilize the antiphase
state and prevent the in-phase state. More precisely, the in-
tegration between the intracellular activator and intercellular
signaling repressor in our model destabilizes the in-phase
synchronization. In this case, the coupling is phase repulsive.
A typical snapshot is plotted in the upper right of Fig. 3(f).
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FIG. 3. (Color online) The dependence of the function G on
phase difference A¢ in [0,27] and the distribution of its zero points
in the case of two coupled oscillators. In (a)—(d), G has three zero
points, two of which are unstable and the other one is unstable in
the cases of AND and OR, whereas one is stable and the other two are
unstable in the cases of ANDN and ORN. In (e), G corresponding to
XOR has four stable zero points and five unstable zero points. In all
the cases, filled circles represent stable points and open circles rep-
resent unstable points, and insets display the corresponding H(A¢)
of the auxiliary system. In (f), some typical instantaneous distribu-
tions of phases are demonstrated in the five cases of logic
operations.

XOR. The function G has nine zero points, four of which,
denoted by A¢p=A,A, and Ap=m+A,,7+A,, respond to
stable states of Eq. (11) and the other five to unstable states,
as shown in Fig. 3(e). The unstable states form the bound-
aries for the attraction basins of the stable states. The role of
XOR is to stabilize four out-of-phase states with phase differ-
ences A¢=A|,A, and Ad=m+A,,m+A,, respectively,
whereas it destabilizes the in-phase and antiphase states. Two
typical snapshots are shown in the bottom row of Fig. 3(f).

IV. CASE OF A POPULATION OF CELLS:
SYNCHRONIZATION AND CLUSTERING

In this section, we investigate the case of N coupled ge-
netic oscillators (N>2), focusing on two dynamical behav-
iors, i.e., synchronization and clustering, which are ensemble
phenomena observed commonly in natural and artificial
populations of (possibly weakly) interacting oscillators. Syn-
chronization is a cooperative in-phase behavior, which has
been the subject of numerous studies in physics and biology
[55,58-60], whereas clustering is a fragmentation of the col-
lective behavior in locally synchronized but well-separated
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subgroups, which has been also observed in numerous con-
texts with distinct contributions [57,61-69]. In what follows,
we investigate balanced clustering and nonbalanced cluster-
ing separately for clarity. (Note that synchronization is a par-
ticular type of clustering, i.e., one clustered.)

A. Balanced clustering

In the analysis part, we present an approach for determin-
ing the stability of balanced clustering. Here, we display nu-
merical results for balanced clustering. In particular, we
show that CRMs of the different structure play different roles
in the achievement of collective behaviors.

AND. Figure 4(a) indicates that one- and three-cluster
states are stable since both \; and \, are negative. The in-
stantaneous phase distributions on the unit cycle as shown in
Fig. 4(b) verify the coexistence of stable complete synchro-
nization and three-cluster state.

OR. In this case, the eigenvalues shown in Fig. 4(c) indi-
cate that only the complete synchronization (one clustered) is
stable, which is verified by the numerical simulation shown
in Fig. 4(d). The analysis together with the numerical simu-
lation shows that the OR plays the role of stabilizing com-
plete synchronization; i.e., for any initial conditions for these
oscillators, the systems consequentially evolve into a stable
complete synchronization.

ANDN. The stability analysis of the eigenvalues shown in
Fig. 4(e) reveals that the network of coupled oscillators with
the ANDN possesses complex cluster-balanced states, e.g., the
stable three-, five-, and eight-cluster states. These clustering
states are numerically implemented as shown in Fig. 4(f).

ORN. We give the results on the stability analysis as shown
in Fig. 4(g), which indicate that the population of oscillators
can give rise to more complex cluster-balanced states than
those displayed in the case of ANDN. For example, two addi-
tional cluster-balanced states, 9- and 11-cluster states, are
found. The instantaneous phase distributions of these cluster-
ing states on the unit cycle are shown in Fig. 4(h).

XOR. In this case, the system of coupled oscillators pos-
sess only a stable cluster-balanced state (three clustered) that
can be seen from the sign of two eigenvalues determining the
stability [see Fig. 4(i)]. A snapshot of the unique balanced
clustering is shown in Fig. 4(j).

To display cellular patterns more clearly, we also plot all
the time courses of the component X in the case of ORN;
refer to Fig. 5. These cluster states appearing in the cases of
different logic operations indicates that different CRMs can
drive fundamentally different cellular patterns.

B. Nonbalanced clustering

Except for balanced clustering as shown in Sec. IV A, we
also find nonbalanced clustering. However, finding all non-
balanced clusterings is much more difficult than finding all
balanced clusterings since in the former, one needs to search
for all stable regions of initial values of coupled systems that
lead to stable nonbalanced clusterings, and this is even im-
possible only with computer simulation when the cell

041903-6



SYNCHRONIZATION AND CLUSTERING OF SYNTHETIC...

O O

(b)

A
@(< 4

0

_2 —

x10
e) ° (®)
~ 0 NRWW
s O[T
: OO0

I
-
o

X
/7
//
[/ °
[/
]/
—//7°
S
/)
<[/ 7
)7
/)
/7
/7
%
N A
)/
[/ 7
IS
/)
<)/
/7

5 10 15 20 25
M

x 10
(9 f (h)
€‘< 0 a o Aj\a/’&%ﬁ
g_1 \\\ ‘Vw
A ] | OO0
x10™*
(i) (1)
. }\
;:- 0 WMM Q
il

FIG. 4. (Color online) Left panel: eigenvalues associated with
intracluster fluctuations \; (blue cycle) and the maximal real part of
nonzero eigenvalues associated with intercluster fluctuations \, (red
square) as a function of the number of balanced clusters with five
different logic functions. Right panel: the corresponding instanta-
neous phase distribution of all possible balanced clusters for [(a)
and (b)] 1- and 3-cluster states for AND; [(c) and (d)] 1-cluster state
(complete synchronization) for oR; [(e) and ()] 3-, 6-, and 8-cluster
states for ANDN; [(h) and (i)] 3-, 6-, 8-, 9-, and 11-cluster states for
ORrRN; and [(j) and (k)] 3-cluster state for XOR. Different clustering
states appear due to different choices of initial conditions but the
cell number is fixed as N=792.

number is large. Here, we mainly want to show that nonbal-
anced clusterings are existent in some cases of five logic
operations. By numerical simulation, we find that different
CRMs can drive different types of nonbalanced clusterings
except for the OR case (since the complete synchronization is
globally stable). Taking the cases of ORN and XOR as ex-
amples, we find several typical nonbalanced clusterings
which are displayed in Fig. 6. In the case of ORN, we find
five- and six-cluster states, whereas in the case of XOR, we
find a four-cluster state and two different types of five-cluster
states. Note that we did not search out all nonbalanced clus-
terings, and other types of nonbalanced clusterings except for
those found are possible, but would depend on the number of
oscillators and the choice of initial conditions.
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FIG. 5. (Color online) Temporal evolutions of the concentration
of X corresponding to ORN in Fig. 4: (a) 3-cluster state, (b) 6-cluster
state, (c) 8-cluster state, (d) 9-cluster state, and (e) 11-cluster state,
where each cluster state is indicated by different color or an integer.
For each obtained cluster state, numerical integration begins from
an initial condition close to the corresponding clustering, and plot
shown begins after allowing a transient time of 10* units.

V. EFFECT OF REWIRING NETWORK ON
SYNCHRONIZATION AND CLUSTERING

Biological rhythm results from the interplay between the
intrinsic properties of the individual cells, the properties of
the communication, as well as the network topology. Each
property may play an important role in shaping the emergent
synchronous behavior. Except that different CRMs can drive
different cellular patterns shown in Secs. III and IV, the re-
wiring architecture of individual cells also may play a sig-
nificant role in promoting synchronization or antisynchroni-
zation of coupled cells. For example, it has been shown that
rewired interaction in a repressilator population with cell-to-
cell communication can offer diverse dynamics, such as mul-
tistability and clustering [23,28]. Note that in the above in-
vestigated models, the signal molecule regulates an activator,
thus performing an activator-regulated communication. Due
to biological background of the core genetic oscillator and
the quorum sensing, however, the signal molecule can also
regulate a repressor, leading to so-called repressor-regulated
communication in contrast to activator-regulated communi-
cation. In this section, we investigate the effect of this rewir-
ing architecture of motifs on synchronization and clustering.

In contrast to the scheme of signal integration in Secs. III
and IV [refer to the simplified scheme shown in Fig. 7(a)], in
what follows we rewire the interaction of the signaling mol-
ecule and its regulated gene inside the cell [16,27], as shown
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FIG. 6. (Color online) Nonbalanced clusterings found in the
cases of ORN and XOR. Left panel: temporal evolutions of the con-
centration of X corresponding to ORN and XOR. Right panel: cellular
patterns for (a) five-cluster state for ORN; (b) six-cluster state for
ORN; (c) five-cluster state for XOR; (d) four-cluster state for XOR;
and (e) five-cluster state for XOR, where each cluster state is indi-
cated by different color or an integer. For each shown nonbalanced
clustering, numerical integration begins from an initial condition
close to the corresponding clustering, and plot shown begins after
allowing a transient time of 10* units.

in Fig. 7(b). More precisely, we let the signaling molecule Al
and the TF X combinatorially regulate the target gene y in-
stead of gene x. Completely similarly, we can derive expres-
sions of six possible CRIFs (see Table V), and the dynamical
equations describing the time evolution of the concentrations
of X, Y, L, and S monomers in the following forms:

dXi_ JHRX oy sy
dt_a"1+X? e
ay,
I _CRIF-6,Y,,
dt
d _ LrwX
e rext T
ds,
d—t' =a,L -85+ 1(S,-S), (12)

where the CRIFs are similar to those in the case of activator-
regulated communication (refer to Table V) except that pa-
rameters «a, and ., are replaced by «, and u,,, respectively.
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Architecture

AND 1,3 1,2,4,5
OR 1 1,2,3
ANDN 3,6,8 5,8
ORN 3,6,8,9,11 5,8
XOR 3 5,8

FIG. 7. (Color online) Different balanced clusterings of original
and rewired genetic architectures: (a) activator-regulated communi-
cation and (b) repressor-regulated communication. The correspond-
ing clusterings for two cases are listed at the bottom, respectively.
Note: only the same balanced clusterings are shown for three logic
operations in the case of repressor-regulated communication, but
different nonbalanced clusterings are possible (data are not shown
here).

In both cases, the settings of parameter values are also the
same except for u,,=90. The numerical results are summa-
rized in Fig. 7, where all balanced clusterings are listed in
two cases of activator-regulated communication and
repressor-regulated communication for comparison. From
Fig. 7, we see that different CRMs also can drive fundamen-
tally different cellular patterns in the case of repressor-
regulated communication, but the wave patterns are different
from those in the case of activator-regulated communication
(data for comparison are not shown). In addition, we show
how the odd part of the interaction function H(A¢), G(A¢),
in the five logic operations, changes with phase difference
A¢ e[0,27] in Fig. 8, where stable zero points (symbolized
as filled circles) and unstable zero points (symbolized as
open circles) are shown. Our results suggest that the archi-
tecture of biological systems might make them particularly
evolvable, namely, simple shuffling of finely tuned network
architectures may render new functionalities of networks
with feedforward and feedback.

The rational design of biological networks and pathways
promises to reveal ways of rewiring cells for new biological
functions or of gaining insights into the behavior of natural
systems. Much of the work to date has focused on the ma-
nipulation of transcriptional and post-transcriptional ele-
ments to create synthetic gene networks with desired func-
tions [4,6,70-72]. In contrast, our present study provides a
possible arsenal for designing and constructing a network of
genetic oscillators with a different cellular behavior, indicat-
ing that rationally reprogramming integration of two input
TFs by changing a CRM to activate a targeted gene could be
used to induce transition among various cellular patterns to-
ward the corresponding desired functions. In spite of this, we
expect that understanding how different CRMs render differ-
ent responses for the coupled genetic oscillators with quorum
sensing would provide a valuable insight into designing new
synthetic genetic circuits.
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FIG. 8. (Color online) The dependence of the function G(A¢)
on phase difference A ¢, where its stable zero points (filled circles)
and unstable zero points (open circles) are shown.

VI. CONCLUSION AND DISCUSSION

Using models of synthetic genetic relaxation oscillators
coupled with quorum sensing, we have shown both analyti-
cally and numerically that different CRMs drive fundamen-
tally different cellular patterns, such as synchronization and
balanced clustering, and nonbalanced clustering, by consid-
ering two types of communications: activator-regulated com-
munication and repressor-regulated communication. Specifi-
cally, in the case of two coupled oscillators, we have shown
that different CRMs have marked influences on characteris-
tics of phase-locking processes. For example, two oscillators
can display in-phase, antiphase, and out-of-phase synchroni-
zation with a certain constant phase difference, depending on
the type of CRM. In the case of N(>2) coupled oscillators
with activator-regulated communication, there are 1 and 3
balanced clusters for AND; only 1 balanced cluster for OR; 3,
6, and 8 balanced clusters for ANDN; 3, 6, 8, 9, and 11 bal-
anced clusters for ORN; and only 3 balanced clusters for XOR.
On the other hand in the case of N coupled cells with
repressor-regulated communication, there are 1, 2, 4, and 5
balanced clusters for AND; 1, 2, and 3 balanced clusters for
OR; 5 and 8 balanced clusters for ANDN, ORN, and XOR. In
addition, some nonbalanced clusters have been also found.
These results would provide a strategy for a network of ge-
netic oscillators: the selection of cooperative rhythmic man-
ner, e.g., synchronization and clustering, is governed by the
nature of the integration of the intracellular signal and the
secretion of the biochemical signals through which the oscil-
lating cells are globally coupled. In particular, genetic net-
work architecture found in synchronous circadian clocks [73]
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might be constrained since the complete synchronization in-
dependent of initial conditions takes place only in the case of
OR type of response. In addition, our results would imply that
multicellular organisms evolve into some functional CRMs
for particular goals (e.g., cellular patterns) by performing an
elaborate computation for input TFs.

We expect that our findings will stimulate further investi-
gations under a more realistic condition involving stochastic-
ity [21,74-76] and heterogeneity [19] as specified in the fol-
lowing four points:

(1) In a stochastic environment, we should consider the
stability of the obtained desired dynamic pattern. Theoreti-
cally, Golomb et al. [61] showed that the clustering state is
stable on the condition that noise intensity is below a critical
value. On the other hand, the global noise can enhance the
extent of phase synchronization [77], but also can destroy the
clustering state like in slow switching [78]. Therefore, we
should carefully design the CRM structure in the presence of
noise to preserve the desired dynamic patterns.

(2) In our model, a population of identical oscillators
communicate with a uniform coupling, but it would be of
great interest to study the influence of the cellular variability
and coupling strength heterogeneity on the synchronization
and clustering. If heterogeneity is sufficiently small com-
pared to the coupling strength, we can treat the system as
that of identical oscillators. Otherwise, the effect of hetero-
geneity should be considered. In fact, it has been shown that
heterogeneous coupling strength and element variability can
make the occurrence of clustering states possible in networks
of neural oscillators [79]. Similarly, in our case, heterogene-
ity would result in synchronization and clustering.

(3) Our results were obtained under the condition that the
intercellular communication is rather weak. However, it is
likely that coupling is stronger than that considered here
[23,80]. Therefore, it would be of interest to analyze dynami-
cal patterns in the case of strong coupling. In this case, other
modes of complex behaviors such as multistability [23,24],
inhomogeneous limit cycle [23,29], oscillation death [20,23],
aperiodic oscillation [81], and chaos [29,81] may also appear
in our models.

(4) We point out that our results are in general robust
against changes in parameter values if they are not chosen
close to the margin of oscillation of the uncoupled oscillator.
For a kind of response (e.g., the response of AND type), how-
ever, modes of clustering possibly depend on parameter val-
ues. For example, for a set of parameter values given above,
two kinds of clustering modes in the case of AND have been
found and displayed, but for a different set of parameter
values, other kinds of clustering modes are possible. In ad-
dition, in the case that parameter values are chosen close to
the margin of oscillation of the uncoupled oscillator, the sys-
tem can display richer dynamical behaviors expected to be
further investigated, but the phase-reduction approach of
Kuramoto [61] cannot be used.

In addition, we point out that many theoretical studies
have shown that biological oscillators intertwined with posi-
tive and negative feedback loops should have the following
essential requirements [82,83]. First, negative feedback is
necessary to carry a reaction network back to the “starting
point” of its oscillation. Second, the negative feedback signal
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must be sufficiently delayed in time so that the chemical
reactions do not settle on a stable steady state. Third, the
kinetic rate laws of the reaction mechanism must be suffi-
ciently “nonlinear” to destabilize the steady state. Fourth, the
reactions that produce and consume the interacting chemical
species must occur on appropriate time scales that permit the
network to generate oscillations. Facing to the complexity of
gene regulatory networks, these mathematical insights reveal
the true nature of gene relaxation oscillators. Our core relax-
ation oscillator can show sustained and robust oscillation un-
der the guarantee of the above theoretical results. Especially,
our coupled positive and negative feedback biological oscil-
lator models rely on a separation of time scales between the
two components to create relaxation oscillations; i.e., the ac-
tivator must have faster dynamics than that of the repressor.
To that end, we can increase the plasmid copy number con-
centrations as well as degradation rates of activator, where
high degradation rate has artificially been implemented by
using peptide sequences appended to the protein to make it a
target for proteases in the cell [6,84]. Therefore, it would be
possible to experimentally demonstrate our circuit design. It
would be much more useful to take a hybrid approach in
which experiments and modeling can be performed in paral-
lel to advance one another. In a cyclic fashion, experiments
can be used to inform the designs of mathematical models,
which can in turn be used to make experimentally testable
predictions.

Finally, ongoing structural, biochemical, and cell-based
studies have begun to reveal several common principles by
which protein components are used to specifically transmit
and process information. Our studies demonstrate that these
relatively simple principles can be used to rewire signaling
behaviors in a process that mimics the evolution of new phe-
notypic responses. We expect that our work would motivate
the investigations in areas such as development, where epi-
genetic inheritance leads to a persistent phenotypic alteration
in response to transient signals, or in cell-to-cell communi-
cation systems that coordinate the rich complexity of group
behaviors.
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APPENDIX: OKUDA’S APPROACH

In this appendix, we define cluster-balanced states and
study their stability. Each cluster contains the same number
of oscillators. Thus, we restrict our attention mainly on sym-
metric states.

Assume that the phase model of N oscillators is governed
by

dé; _

dt (Al)

N
1
NFEI I(¢i— ),

where i=1,2,...,N. Although () can be given any value in a
suitable moving coordinate, we assume =0 below without
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explicitly referring to it. First, we define a symmetric
M-cluster state as the state in which N/M oscillators belong
to each of M clusters. Since no randomness is included in the
system, all the oscillators in a certain cluster should be lo-
cated at the same phase. Let @, denote the phase of cluster &
(k=0,1,...,M-1). From the phase equation, we obtain the
equation for @, as

M-1
1
O =— E I'(d - D). (A2)
M5
We seek solutions to this equation in the form
2k
q)k = M)t + 7, (A3)

which implies that the phases of the M clusters are equally
separated and rotate at a constant frequency ™. Substitut-
ing it into the above phase equation, we find that the solution
of the above form exists if

M-1
W= LS r(@)

e i, (A4)
Next, we analyze the stability of the balanced M-cluster
state. Let us set d¢;= ¢p;— P, (where i belongs to cluster k)
and express the linearized equation for d¢; as déP=JD,
where the vector notation SP=(5¢;,5p,,...,50¢y) and
N X N matrix J have been used. Without loss of generality,
we assume that cluster k consists of the oscillators with
kKN/M <i=(k+1)N/M. Then, we have

al - BE - BE - Bu-E
yo| TPmE A RE T AR )
- BiE - BE al - BoE

where [ is the N/M X N/M unit matrix and E is a matrix of
the same dimension whose components are all 1, @ and S,
are expressed as

a——§_‘,l F,<27rk)

B, ——F'< 27Tk> (A6)
M2 ’

M

and primes indicate the derivative with respect to the argu-
ment. Since J is a cyclic matrix, the explicit form of the
characteristic equation of J can be obtained as

IN = J| =

M-1 M-1
H (}\ _ a)1+ ( 2 BkeiZﬂ'kq/ME)

4=0 k=0

M-1 M 1

_()\ a)N MH ()\ a+_2 ,8 el277kq/M) 0
q=0

(A7)

where i=\-1. In this way, we obtain N eigenvalues of J in
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the forms

M-1

2wk
,= =—2r ., p=MM+1,N-1,
MkO

(A8)
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M-1
N
A = _ el27qu/M
q Mkzoﬁk
M-1
2k )
——E F’( ) —e M) g=0,1,... . M~1.
Mo

(A9)
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